## 2011 OIL AND GAS DEVELOPMENT BASELINE WATER QUALITY MONITORING REPORT

# NORTH FORK GUNNISON RIVER BASIN DELTA COUNTY, COLORADO

Prepared for—

NFRIA-WSERC Conservation Center 204 Poplar Avenue Paonia, Colorado 81428

Prepared by—

ERO Resources Corporation 161 South 2<sup>nd</sup> St., P.O. Box 932 Hotchkiss, Colorado 81419 (970) 872-3020

December 21, 2011

## **CONTENTS**

| 1.0 | Introduction and Purpose         | 1  |
|-----|----------------------------------|----|
| 2.0 | Summary of 2011 Activities       | 1  |
| 3.0 | Water Quality Monitoring Results | 2  |
|     | 3.1. Surface Water Results       |    |
| 3   | 3.2. Spring Results              | .4 |
|     | Conclusions and Recommendations  |    |

# **TABLES**

| Table 1. | Surface Water Sampling Results. | 7 |
|----------|---------------------------------|---|
| Table 2. | Spring Sampling Results.        | 9 |

# FIGURE

Figure 1. NFRIA-WSERC 2011 Oil and Gas Water Quality Monitoring Locations

## APPENDIX

Appendix A—Laboratory Results for January, July and November 2011 Sampling

## 2011 OIL AND GAS DEVELOPMENT BASELINE WATER QUALITY MONITORING REPORT NORTH FORK GUNNISON RIVER BASIN DELTA COUNTY, COLORADO

## **1.0 Introduction and Purpose**

In 2011, the NFRIA-WSERC Conservation Center began a program to monitor various tributaries to the North Fork Gunnison River and various water supply sources (springs and wells) that could be affected in the future by proposed nearby natural gas drilling (Figure 1). The purpose of the monitoring is to provide a baseline of water quality conditions in 2011 at the monitored surface and ground water locations from which to compare future water quality conditions if and when new natural gas wells are drilled and developed within the North Fork Gunnison River basin. The intent is to protect water supply sources and the quality of surface streams by tracking and reporting any observed changes to water quality that may result from future natural gas development in the basin.

## 2.0 Summary of 2011 Activities

In January, July, and November 2011, NFRIA-WSERC staff and trained volunteers collected water quality samples from five surface water locations (Figure 1). These included:

- Milk Creek in the Surface Creek drainage near Cedaredge
- Dever Creek in the Leroux Creek drainage near Hotchkiss
- Hubbard Creek, a tributary to the North Fork Gunnison River near Bowie, and
- West Muddy Creek and East Muddy Creek north of Paonia Reservoir.

These locations are downstream or downgradient from proposed gas permitting sites. In addition, in July 2011, NFRIA-WSERC staff and trained volunteers collected water quality samples from three springs that serve as water supply sources (Figure 1):

- Cave Spring, located a few miles north and east of Hotchkiss
- Belknap Spring, located near Highway 133 east of Hotchkiss, and
- Domestic Pipeline Spring located slightly north of Belknap Spring (Figure 1).

The sample waters were measured in the field for pH, temperature, and specific conductance. If possible, the staff and volunteers measured the flow of the stream or spring when the sample was collected. Samples for laboratory analysis were collected, placed in cooled containers, and submitted to Accutest Laboratories in Wheat Ridge, Colorado, following protocols provided in the Field Sampling Plan and Quality and Assurance Project Plan prepared in 2010 for this monitoring program (NFRIA-WSERC 2010a, 2010b). The samples were analyzed for a long list of volatile organic compounds (only in the spring samples), semi-volatile organic compounds, metals, and general chemistry (cations, anions, nutrients, total and suspended solids) (Tables 1 and 2).

#### **3.0 Water Quality Monitoring Results**

Complete analytical results for the 2011 sampling events are provided in Appendix A. The analytical results provide the laboratory reporting limits (RL) and method detection limits (MDL) for each analyte during each sampling event. The surface water sampling results are summarized in Table 1 and spring sampling results are summarized in Table 2.

#### 3.1. Surface Water Results

The surface water sites were not sampled for volatile organic compounds because it is expected that any such compounds would volatilize quickly after entering a stream. However, sixty-five semi-volatile organic compounds were analyzed in each of the 15 surface water samples collected by NFRIA-WSERC in 2011; none of these compounds were detected in any of the samples. Of the eleven total or dissolved metals samples that were analyzed, there were no detections of total arsenic, dissolved cadmium, or dissolved zinc.

Barium is used by the oil and gas industry to make drilling mud. Most surface water contains less than 0.4 mg/L of barium, which is abundant in the Earth's crust. Total barium concentrations ranged from 0.025 mg/L in Milk Creek to 0.186 mg/L in West Muddy Creek. The state water supply standards for barium are a 30-day (chronic) standard of 0.49 mg/L and 1-day (acute) standard of 1 mg/L (CDPHE 2011).

Strontium, also a fairly common element, may be present in the produced water from a natural gas well. Streams generally have less than 1 mg/L of strontium (Capo et al 1998). Total strontium concentrations ranged from 0.092 mg/L in Milk Creek to 0.768

mg/L in Dever Creek. There is not a state water supply or aquatic life standard for strontium. Given that strontium concentrations tend to be higher in ground water, it would appear that ground water is a major source of water to Dever Creek.

Calcium is an abundant element found in sedimentary, igneous and metamorphic rocks, and is generally the predominant cation in streams (Hem 1992). It may be present in elevated concentrations in the formation water in natural gas wells. There is no state water quality standard for calcium. Calcium concentrations ranged from 13.6 mg/L in Milk Creek to 84.6 mg/L in Dever Creek, which is within the normal range for non-saline waters.

Iron may also be present in elevated concentrations in formation water in natural gas wells. In the surface water samples collected in 2011, total iron concentrations ranged from below the detection limit in West Muddy Creek to 1.34 mg/L in Dever Creek. The two other samples collected in Dever Creek in 2011 had total iron concentrations that were an order of magnitude lower. The elevated iron concentration in July was associated with an elevated total suspended solids concentration in the creek during that sampling event (TSS=36 mg/L in July and 5 mg/L or less in January and November). The state standard for total iron is 1.0 mg/L, a chronic standard for aquatic life (CDPHE 2011).

Dissolved magnesium concentrations ranged from 4.8 mg/L in Milk Creek to 54.2 mg/L in Dever Creek. Total manganese concentrations ranged from below the detection limit in Milk Creek to 0.08 mg/L in East Muddy Creek. Dissolved potassium concentrations ranged from below the detection limit in East Muddy Creek to 5.8 mg/L in Dever Creek. Dissolved sodium concentrations ranged from 7.4 mg/L in East Muddy Creek to 50 mg/L in Dever Creek. None of these parameters have primary water supply or aquatic life standards, and none of these values are exceptionally high. Specific conductivity, a measurement of the amount of dissolved solids in water, ranged from less than 200  $\mu$ S/cm (low) in Milk Creek to nearly 1,000  $\mu$ S/cm (moderate) in Dever Creek. It is apparent that Dever Creek is the stream with the poorest water quality of those sampled. This is due to local geology, both from the dissolution of minerals from the underlying Mancos and Mesa Verde bedrock (as stated previously, it appears that ground

water is a major source of water to Dever Creek), and the transport of suspended sediments from the land surface into the creek.

The general chemistry results show that surface water in the North Fork Gunnison River basin is a bicarbonate water type, has low chloride concentrations, low nutrient concentrations, and generally low dissolved solids and sulfate concentrations. Again, Dever Creek is an exception to the other streams. It contained somewhat elevated, although not high, dissolved solids and sulfate concentrations, and had the highest bicarbonate concentrations. One total phosphorus concentration in Dever Creek was 0.17 mg/L, which exceeds the state's interim standard of 0.11 mg/L for cold water streams (Konowal 2011). The phosphorus was likely present in the creek in association with the elevated suspended sediments on that date, and may be from a natural source or due to agricultural land use in the Dever Creek watershed.

For the analytes that were detected at the five sampled stream locations, there did not appear to be any trends in changing concentrations during 2011. However, it is difficult to discern trends with only three datasets, and without data available during previous years.

#### 3.2. Spring Results

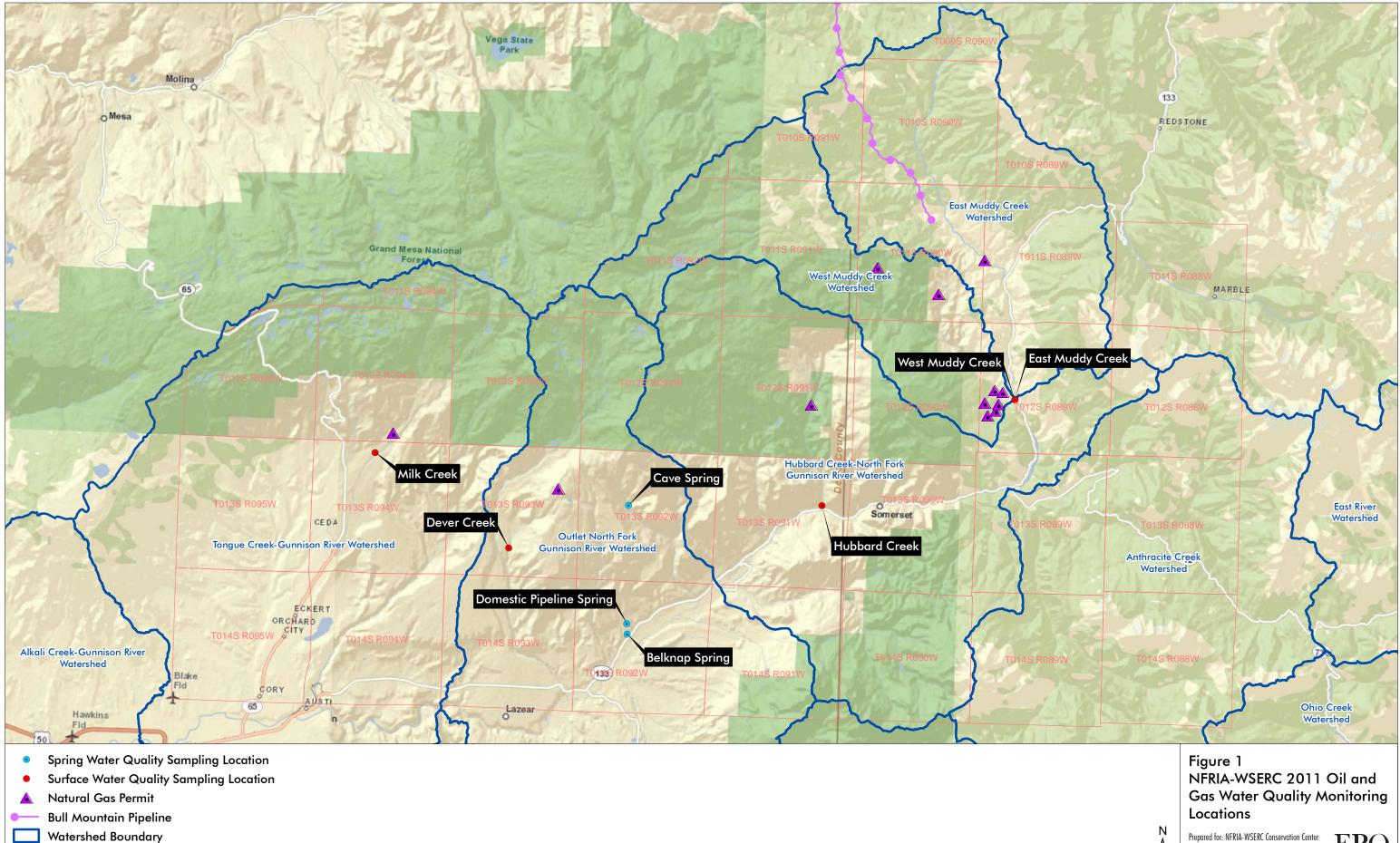
The three water supply springs were sampled for 42 volatile organic compounds and 65 semi-volatile organic compounds. With one exception, there were no detections of any of these compounds. One semi-volatile organic compound, bis(2-Ethylhexyl)phthalate (abbreviated DEHP), was detected at very low concentrations (below the laboratory lower quantitation limit) in the Cave Spring and Belknap Spring samples. DEHP is produced on a massive scale for use as a plasticizer, and is present in many plastic products. Plastics may contain 1 to 40 percent DEHP. Because the DEHP concentration in the Cave and Belknap Spring samples was nearly the same in both samples (about 1  $\mu$ g/L), it is likely that the samples were contaminated during collection, possibly from the plastic sample gloves used by the samplers. The acceptable maximum contaminant level in public water supplies is 6  $\mu$ g/L, and the state's health-based standard is 2.5  $\mu$ g/L (CDPHE 2011).

Metal concentrations in the spring samples were fairly low, although calcium concentrations (37.7 to 62.7 mg/L) and sodium concentrations (39 to 48.4 mg/L) were somewhat elevated, but typical for ground water, indicating that ground water is a source of supply to the springs. Cadmium and zinc were not detected in any of the spring samples, magnesium concentrations were fairly low, and potassium concentrations were low. The general chemistry analyses show that the water supply to the springs is a bicarbonate type water, with low chloride, nutrient, and, with one exception, low sulfate concentrations. The sulfate concentration in Belknap Spring was somewhat elevated (104 mg/L), but well below the secondary drinking water standard of 250 mg/L (CDPHE 2011). The dissolved solids concentrations ranged from 332 mg/L in the Domestic Pipeline Spring to 480 mg/L in Belknap Spring; the EPA recommended drinking water standard is 500 mg/L. The pH range in the springs was 7.3 to 7.8, indicating that the spring water is slightly alkaline.

It appears that the springs, although somewhat mineralized due to the nature of the geologic materials along the flow path, provide good quality water to the water companies who use these springs for water supply. It appears that the springs are not affected by any upgradient human activities that have the potential to degrade water quality. The springs should continue to be monitored to evaluate any long term trends or changes in water quality.

#### 4.0 Conclusions and Recommendations

The surface and spring samples collected in 2011 appear to indicate baseline, natural conditions unaffected by oil and gas drilling. Baseline water quality sampling should continue in 2012 and for as long as possible before any future natural gas drilling and gas extraction begins in the North Fork Gunnison River basin. With more water quality data available, it will be possible to establish natural trends in water quality, such as those that occur seasonally or during wet or drought periods. With such information available, it will be more likely that any impacts due to natural gas development will be more easily observable and separable from natural conditions.


There were no detections (except for very low detections of DEHP in two of the springs) of volatile or semi-volatile organic compounds. Some volatile and semi-volatile

organic compounds occur naturally, so baseline monitoring of these compounds should continue. However, given the 2011 results, annual sampling for the volatile and semivolatile organic compounds is likely adequate. It is recommended that NFRIA-WSERC sample for these compounds during the same month every year during a period when ground water likely contributes a larger proportion of the stream and spring flow than during periods of snow melt and runoff ; sometime between late July and October would be preferable. If possible, it is recommended to sample creeks and springs seasonally for metals, general chemistry, and field parameters.

#### REFERENCES

- Capo, Rosemary C., Brian W. Stewart, and Oliver A. Chadwick. 1998. Strontium Isotopes as Tracers of Ecosytem Processes: Theory and Methods. Geoderma 82, pp. 197-225.
- Colorado Department of Public Health and Environment (CDPHE). 2011. The Basic Standards and Methodologies for Surface Water (5 CCR 1002-31). Water Quality Control Commission. November 30.
- Hem, John D. 1992. Study and Interpretation of the Chemical Characteristics of Natural Water. U.S. Geological Survey Water-Supply Paper 2254.
- Konowal, Aimee. 2011. Proposed Colorado WQCD nutrient criteria. ERO Resources Corporation personal communication with Aimee Konowal, Environmental Data Unit Manager, Water Quality Control Division. October 5.
- NFRIA-WSERC Conservation Center. 2010a. North Fork and Lower Gunnison River Watershed Oil & Gas Water Quality Monitoring Plan: Field Sampling Plan. Prepared by NFRIA-WSERC Conservation Center and ERO Resources Corporation. December 15.
- NFRIA-WSERC Conservation Center. 2010b. North Fork and Lower Gunnison River Watershed Oil & Gas Water Quality Monitoring Plan: Quality Assurance Project Plan. Prepared by NFRIA-WSERC Conservation Center and ERO Resources Corporation. December 15.

# Appendix A— Laboratory Results for January, July and November 2011 Sampling



Township and Range

1.5

3

Miles

File: 5111 Figure 1 july stations.mxd (WH) December 2011



#### Table 1. Surface Water Sampling Results

| Table 1. Surface Water Sam           | pling rest     | lits      | 0.01                       |                               |            |                     | 0.00      |             |            |                                        | 0.00        |                      |                       | 0.07                                  |                       | 0.00                           |                 |           |                | I                     |
|--------------------------------------|----------------|-----------|----------------------------|-------------------------------|------------|---------------------|-----------|-------------|------------|----------------------------------------|-------------|----------------------|-----------------------|---------------------------------------|-----------------------|--------------------------------|-----------------|-----------|----------------|-----------------------|
|                                      |                |           | G-01                       | G-01 G-02<br>Milk Ck Dever Ck |            |                     |           |             |            | G-06<br>Hubbard                        | C.k         |                      | G-07<br>West Muddy Ck |                                       | G-08<br>East Muddy Ck | Sample<br>Blank                | Cooler<br>Blank | Sample    | Colorado Water |                       |
|                                      | Unito          | 1/10/2011 |                            |                               | 11/01/0011 | 1/10/2011 7/26/2011 |           | 11/01/0011  | 11/01/0011 | 1/10/2011 7/26/2011                    |             | -                    | 4                     | · · · · · · · · · · · · · · · · · · · | 1 1/10/2011 7/26/2011 |                                |                 |           | Blank          | Supply                |
| Date Sampled:                        | Units          | 1/19/2011 | 7/26/2011 7/26/201         | 1 11/21/2011                  | 11/21/2011 | 1/19/2011 7/26/2011 | 7/26/2011 | 11/21/2011  | 11/21/2011 | 1/19/2011 7/26/201                     | 1 7/26/2011 | 11/21/2011 11/21/201 | 1 1/19/2011 7/26/2011 | 7/26/2011 11/21/2011 11/21/201        | 1 1/19/2011 7/26/2011 | 1 7/26/2011 11/21/2011 11/21/2 | 1/19/2011       | 1/19/2011 | 7/26/2011      | Standard <sup>1</sup> |
| GC/MS Semi-volatiles (SW846 8270C)   |                |           |                            |                               | 1          |                     |           |             |            |                                        |             |                      |                       |                                       |                       |                                |                 |           |                | NO                    |
| Benzoic Acid                         | ug/l           | ND (4.1)  | ND (7.4) -                 | ND (7.1)                      | -          | ND (4.1) ND (8.2)   | -         | ND (7.1)    | -          | ND (4.1) ND (7.2)                      |             | ND (7.3) -           | ND (4.1) ND (7.2)     |                                       | ND (4.1) ND (7.5)     |                                | ND (4.8)        | ND (4.1)  | -              | NS                    |
| 2-Chlorophenol                       | ug/l           | ND (1.2)  | ND (0.57) -                | ND (0.55)                     | -          | ND (1.2) ND (0.64)  | -         | ND (0.55)   | -          | ND (1.2) ND (0.56                      | /           | ND (0.56) -          | ND (1.2) ND (0.56)    | (/                                    | ND (1.2) ND (0.58)    | ( )                            | ND (1.4)        | ND (1.2)  | -              | 35                    |
| 4-Chloro-3-methyl phenol             | ug/l           | ND (2.5)  | ND (0.49) -                | ND (0.48)                     | -          | ND (2.5) ND (0.55)  | -         | ND (0.48)   | -          | ND (2.5) ND (0.48                      | ,           | ND (0.49) -          | ND (2.5) ND (0.48)    |                                       | ND (2.5) ND (0.50)    |                                | ND (2.9)        | ND (2.5)  | -              | 210                   |
| 2,4-Dichlorophenol                   | ug/l           | ND (1.7)  | ND (0.51) -                | ND (0.50)                     | -          | ND (1.7) ND (0.57)  | -         | ND (0.50)   | -          | ND (1.7) ND (0.50                      | <i>'</i>    | ND (0.50) -          | ND (1.7) ND (0.50)    | ()                                    | ND (1.7) ND (0.52)    |                                | ND (2.0)        | ND (1.7)  | -              | 21                    |
| 2,4-Dimethylphenol                   | ug/l           | ND (1.0)  | ND (0.83) -                | ND (0.81)                     | -          | ND (1.0) ND (0.93)  | -         | ND (0.81)   | -          | ND (1.0) ND (0.82                      | ,           | ND (0.83) -          | ND (1.0) ND (0.81)    |                                       | ND (1.0) ND (0.85)    |                                | ND (1.2)        | ND (1.0)  | -              | 140                   |
| 2,4-Dinitrophenol                    | ug/l           | ND (1.2)  | ND (3.9) -                 | ND (3.8)                      | -          | ND (1.2) ND (4.4)   | -         | ND (3.8)    | -          | ND (1.2) ND (3.8)                      |             | ND (3.9) -           | ND (1.2) ND (3.8)     | - ND (3.9) -                          | ND (1.2) ND (4.0)     | - ND (3.8) -                   | ND (1.4)        | ND (1.2)  | -              | 14                    |
| 4,6-Dinitro-o-cresol                 | ug/l           | ND (1.0)  | ND (4.9) -                 | ND (4.8)                      | -          | ND (1.0) ND (5.5)   | -         | ND (4.8)    | -          | ND (1.0) ND (4.8)                      |             | ND (4.9) -           | ND (1.0) ND (4.8)     | - ND (4.9) -                          | ND (1.0) ND (5.0)     | - ND (4.8) -                   | ND (1.2)        | ND (1.0)  | -              | 0.27                  |
| 2-Methylphenol                       | ug/l           | ND (2.5)  | ND (0.54) -                | ND (0.52)                     | -          | ND (2.5) ND (0.60)  | -         | ND (0.52)   | -          | ND (2.5) ND (0.53                      | ,           | ND (0.53) -          | ND (2.5) ND (0.53)    |                                       | ND (2.5) ND (0.55)    | , ,                            | ND (2.9)        | ND (2.5)  | -              | NS                    |
| 4-Methylphenol                       | ug/l           | ND (1.8)  | ND (0.50) -                | ND (0.49)                     | -          | ND (1.8) ND (0.56)  | -         | ND (0.49)   | -          | ND (1.8) ND (0.49                      | ,           | ND (0.50) -          | ND (1.8) ND (0.49)    |                                       | ND (1.8) ND (0.51)    |                                | ND (2.1)        | ND (1.8)  | -              | NS                    |
| 2-Nitrophenol                        | ug/l           | ND (2.0)  | ND (0.55) -                | ND (0.53)                     | -          | ND (2.0) ND (0.62)  | -         | ND (0.53)   | -          | ND (2.0) ND (0.54                      | ,           | ND (0.54) -          | ND (2.0) ND (0.54)    |                                       | ND (2.0) ND (0.56)    | , ,                            | ND (2.4)        | ND (2.0)  | -              | NS                    |
| 4-Nitrophenol                        | ug/l           | ND (1.1)  | ND (2.9) -                 | ND (2.9)                      | -          | ND (1.1) ND (3.3)   | -         | ND (2.9)    | -          | ND (1.1) ND (2.9)                      | -           | ND (2.9) -           | ND (1.1) ND (2.9)     | - ND (2.9) -                          | ND (1.1) ND (3.0)     | - ND (2.9) -                   | ND (1.3)        | ND (1.1)  | -              | 56                    |
| Pentachlorophenol                    | ug/l           | ND (1.3)  | ND (0.69) -                | ND (0.67)                     | -          | ND (1.3) ND (0.77)  | -         | ND (0.67)   | -          | ND (1.3) ND (0.67                      | ) -         | ND (0.68) -          | ND (1.3) ND (0.67)    | - ND (0.68) -                         | ND (1.3) ND (0.70)    | ) - ND (0.67) -                | ND (1.5)        | ND (1.3)  | -              | 1                     |
| Phenol                               | ug/l           | ND (2.2)  | ND (0.49) -                | ND (0.48)                     | -          | ND (2.2) ND (0.55)  | -         | ND (0.48)   | -          | ND (2.2) ND (0.48                      | ) -         | ND (0.49) -          | ND (2.2) ND (0.48)    | - ND (0.49) -                         | ND (2.2) ND (0.50)    | ) - ND (0.48) -                | ND (2.6)        | ND (2.2)  | -              | 2,100                 |
| 2,4,5-Trichlorophenol                | ug/l           | ND (1.3)  | ND (0.76) -                | ND (0.74)                     | -          | ND (1.3) ND (0.86)  | -         | ND (0.74)   | -          | ND (1.3) ND (0.75                      | ) -         | ND (0.76) -          | ND (1.3) ND (0.75)    | - ND (0.76) -                         | ND (1.3) ND (0.78)    | ) - ND (0.75) -                | ND (1.5)        | ND (1.3)  | -              | 700                   |
| 2,4,6-Trichlorophenol                | ug/l           | ND (1.7)  | ND (0.58) -                | ND (0.56)                     | -          | ND (1.7) ND (0.65)  | -         | ND (0.56)   | -          | ND (1.7) ND (0.57                      | ) -         | ND (0.57) -          | ND (1.7) ND (0.56)    | - ND (0.57) -                         | ND (1.7) ND (0.59)    | ) - ND (0.57) -                | ND (2.0)        | ND (1.7)  | -              | 3.2                   |
| Acenaphthene                         | ug/l           | ND (1.0)  | ND (0.62) -                | ND (0.60)                     | -          | ND (1.0) ND (0.69)  | -         | ND (0.60)   | -          | ND (1.0) ND (0.61                      | ) -         | ND (0.61) -          | ND (1.0) ND (0.60)    | - ND (0.61) -                         | ND (1.0) ND (0.63)    | ) - ND (0.61) -                | ND (1.2)        | ND (1.0)  | -              | 420                   |
| Acenaphthylene                       | ug/l           | ND (1.0)  | ND (0.62) -                | ND (0.60)                     | -          | ND (1.0) ND (0.69)  | -         | ND (0.60)   | -          | ND (1.0) ND (0.61                      | ) -         | ND (0.61) -          | ND (1.0) ND (0.60)    | - ND (0.61) -                         | ND (1.0) ND (0.63)    | ) - ND (0.61) -                | ND (1.2)        | ND (1.0)  | -              | NS                    |
| Anthracene                           | ug/l           | ND (1.3)  | ND (0.49) -                | ND (0.48)                     | -          | ND (1.3) ND (0.55)  | -         | ND (0.48)   | -          | ND (1.3) ND (0.48                      | ) -         | ND (0.49) -          | ND (1.3) ND (0.48)    | - ND (0.49) -                         | ND (1.3) ND (0.50)    | ) - ND (0.48) -                | ND (1.5)        | ND (1.3)  | -              | 2,100                 |
| Benzo(a)anthracene                   | ug/l           | ND (1.0)  | ND (0.49) -                | ND (0.48)                     | -          | ND (1.0) ND (0.55)  | -         | ND (0.48)   | -          | ND (1.0) ND (0.48                      | ) -         | ND (0.49) -          | ND (1.0) ND (0.48)    | - ND (0.49) -                         | ND (1.0) ND (0.50)    | ) - ND (0.48) -                | ND (1.2)        | ND (1.0)  | -              | 0.0048                |
| Benzo(a)pyrene                       | ug/l           | ND (0.90) | ND (0.49) -                | ND (0.48)                     | -          | ND (0.90) ND (0.55) | -         | ND (0.48)   | -          | ND (0.90) ND (0.48                     | ) -         | ND (0.49) -          | ND (0.90) ND (0.48)   | - ND (0.49) -                         | ND (0.90) ND (0.50)   | ) - ND (0.48) -                | ND (1.1)        | ND (0.90) |                | 0.2                   |
| Benzo(b)fluoranthene                 | ug/l           | ND (1.4)  | ND (0.49) -                | ND (0.48)                     | -          | ND (1.4) ND (0.55)  | -         | ND (0.48)   | -          | ND (1.4) ND (0.48                      | ) -         | ND (0.49) -          | ND (1.4) ND (0.48)    | - ND (0.49) -                         | ND (1.4) ND (0.50)    | ) - ND (0.48) -                | ND (1.6)        | ND (1.4)  | -              | 0.0048                |
| Benzo(g,h,i)perylene                 | ug/l           | ND (2.0)  | ND (0.56) -                | ND (0.54)                     | -          | ND (2.0) ND (0.63)  | -         | ND (0.54)   | -          | ND (2.0) ND (0.55                      | ) -         | ND (0.55) -          | ND (2.0) ND (0.55)    | - ND (0.55) -                         | ND (2.0) ND (0.57)    | ) - ND (0.55) -                | ND (2.4)        | ND (2.0)  | -              | NS                    |
| Benzo(k)fluoranthene                 | ug/l           | ND (1.0)  | ND (0.49) -                | ND (0.48)                     | -          | ND (1.0) ND (0.55)  | -         | ND (0.48)   | -          | ND (1.0) ND (0.48                      | ) -         | ND (0.49) -          | ND (1.0) ND (0.48)    | - ND (0.49) -                         | ND (1.0) ND (0.50)    | ) - ND (0.48) -                | ND (1.2)        | ND (1.0)  | -              | 0.0048                |
| 4-Bromophenyl phenyl ether           | ug/l           | ND (1.5)  | ND (0.49) -                | ND (0.48)                     | -          | ND (1.5) ND (0.55)  | -         | ND (0.48)   | -          | ND (1.5) ND (0.48                      | ) -         | ND (0.49) -          | ND (1.5) ND (0.48)    | - ND (0.49) -                         | ND (1.5) ND (0.50)    | ) - ND (0.48) -                | ND (1.8)        | ND (1.5)  | -              | NS                    |
| Butyl benzyl phthalate               | ug/l           | ND (1.1)  | ND (0.49) -                | ND (0.48)                     | -          | ND (1.1) ND (0.55)  | -         | ND (0.48)   | -          | ND (1.1) ND (0.48                      | ) -         | ND (0.49) -          | ND (1.1) ND (0.48)    | - ND (0.49) -                         | ND (1.1) ND (0.50)    | ) - ND (0.48) -                | ND (1.3)        | ND (1.1)  | -              | 1,400                 |
| Benzyl Alcohol                       | ug/l           | ND (2.0)  | ND (0.63) -                | ND (0.61)                     | -          | ND (2.0) ND (0.70)  | -         | ND (0.61)   | -          | ND (2.0) ND (0.62                      | ) -         | ND (0.62) -          | ND (2.0) ND (0.61)    | - ND (0.62) -                         | ND (2.0) ND (0.64)    | ) - ND (0.62) -                | ND (2.4)        | ND (2.0)  | -              | NS                    |
| 2-Chloronaphthalene                  | ug/l           | ND (1.8)  | ND (0.65) -                | ND (0.63)                     | -          | ND (1.8) ND (0.73)  | -         | ND (0.63)   | -          | ND (1.8) ND (0.63                      | ) -         | ND (0.64) -          | ND (1.8) ND (0.63)    | - ND (0.64) -                         | ND (1.8) ND (0.66)    | ) - ND (0.63) -                | ND (2.1)        | ND (1.8)  | -              | NS                    |
| 4-Chloroaniline                      | ug/l           | ND (1.0)  | ND (0.50) -                | ND (0.49)                     | -          | ND (1.0) ND (0.56)  | -         | ND (0.49)   | -          | ND (1.0) ND (0.49                      | ) -         | ND (0.50) -          | ND (1.0) ND (0.49)    | - ND (0.50) -                         | ND (1.0) ND (0.51)    | ) - ND (0.49) -                | ND (1.2)        | ND (1.0)  | -              | NS                    |
| Chrysene                             | ug/l           | ND (1.0)  | ND (0.49) -                | ND (0.48)                     | -          | ND (1.0) ND (0.55)  | -         | ND (0.48)   | -          | ND (1.0) ND (0.48                      | ) -         | ND (0.49) -          | ND (1.0) ND (0.48)    | - ND (0.49) -                         | ND (1.0) ND (0.50)    | ) - ND (0.48) -                | ND (1.2)        | ND (1.0)  | -              | 0.0048                |
| bis(2-Chloroethoxy)methane           | ug/l           | ND (2.2)  | ND (0.68) -                | ND (0.66)                     | -          | ND (2.2) ND (0.76)  | -         | ND (0.66)   | -          | ND (2.2) ND (0.66                      | ) -         | ND (0.67) -          | ND (2.2) ND (0.66)    | - ND (0.67) -                         | ND (2.2) ND (0.69)    | ) - ND (0.66) -                | ND (2.6)        | ND (2.2)  | -              | NS                    |
| bis(2-Chloroethyl)ether              | ua/l           | ND (1.0)  | ND (0.71) -                | ND (0.69)                     |            | ND (1.0) ND (0.79)  |           | ND (0.69)   | -          | ND (1.0) ND (0.69                      | ,           | ND (0.70) -          | ND (1.0) ND (0.69)    |                                       | ND (1.0) ND (0.72)    |                                | ND (1.2)        | ND (1.0)  | -              | 0.032                 |
| bis(2-Chloroisopropyl)ether          | ug/l           | ND (2.5)  | ND (0.66) -                | ND (0.64)                     | -          | ND (2.5) ND (0.74)  | -         | ND (0.64)   | -          | ND (2.5) ND (0.64                      | ,           | ND (0.65) -          | ND (2.5) ND (0.64)    |                                       | ND (2.5) ND (0.67)    |                                | ND (2.9)        | ND (2.5)  |                | 280                   |
| 4-Chlorophenyl phenyl ether          | ua/l           | ND (2.5)  | ND (0.55) -                | ND (0.53)                     | -          | ND (2.5) ND (0.62)  | -         | ND (0.53)   | -          | ND (2.5) ND (0.54                      | ,           | ND (0.54) -          | ND (2.5) ND (0.54)    |                                       | ND (2.5) ND (0.56)    |                                | ND (2.9)        | ND (2.5)  | -              | NS                    |
| 1,2-Dichlorobenzene                  | ug/l           | ND (1.0)  | ND (0.73) -                | ND (0.70)                     | -          | ND (1.0) ND (0.81)  | -         | ND (0.70)   | -          | ND (1.0) ND (0.71                      | ,           | ND (0.72) -          | ND (1.0) ND (0.71)    |                                       | ND (1.0) ND (0.74)    | , ,                            | ND (1.2)        | ND (1.0)  | -              | 600                   |
| 1,3-Dichlorobenzene                  | ug/l           | ND (1.0)  | ND (0.88) -                | ND (0.86)                     | -          | ND (1.0) ND (0.99)  |           | ND (0.86)   | -          | ND (1.0) ND (0.87                      | ,           | ND (0.87) -          | ND (1.0) ND (0.86)    |                                       | ND (1.0) ND (0.90)    | , ,                            | ND (1.2)        | ND (1.0)  |                | 94                    |
| 1,4-Dichlorobenzene                  | ug/l           | ND (1.0)  | ND (0.75) -                | ND (0.72)                     |            | ND (1.0) ND (0.84)  |           | ND (0.72)   |            | ND (1.0) ND (0.73                      | ,           | ND (0.74) -          | ND (1.0) ND (0.73)    |                                       | ND (1.0) ND (0.76)    | , ,                            | ND (1.2)        | ND (1.0)  |                | 75                    |
| 2,4-Dinitrotoluene                   | ug/l           | ND (1.0)  | ND (0.49) -                | ND (0.48)                     |            | ND (1.0) ND (0.55)  |           | ND (0.48)   |            | ND (1.0) ND (0.48                      | ,           | ND (0.49) -          | ND (1.0) ND (0.48)    |                                       | ND (1.0) ND (0.50)    | , ,                            | ND (1.2)        | ND (1.0)  |                | 0.11                  |
| 2,6-Dinitrotoluene                   | ug/l           | ND (1.8)  | ND (0.49) -                | ND (0.48)                     |            | ND (1.8) ND (0.55)  |           | ND (0.48)   |            | ND (1.8) ND (0.48                      | ,           | ND (0.49) -          | ND (1.8) ND (0.48)    |                                       | ND (1.8) ND (0.50)    |                                | ND (2.1)        | ND (1.8)  |                | NS                    |
| 3,3'-Dichlorobenzidine               | ug/l           | ND (1.0)  | ND (0.60) -                | ND (0.58)                     |            | ND (1.0) ND (0.67)  |           | ND (0.58)   |            | ND (1.0) ND (0.59                      | <i>'</i>    | ND (0.59) -          | ND (1.0) ND (0.58)    |                                       | ND (1.0) ND (0.61)    | ) - ND (0.59) -                | ND (2.1)        | ND (1.0)  |                | 0.078                 |
| Dibenzo(a.h)anthracene               | ug/l           | ND (1.6)  | ND (0.80) -                | ND (0.38)                     |            | ND (1.6) ND (0.90)  | -         | ND (0.78)   | -          | ND (1.6) ND (0.79                      | ,           | ND (0.80) -          | ND (1.6) ND (0.78)    |                                       | ND (1.6) ND (0.82)    | ) - ND (0.39) -                | ND (1.2)        | ND (1.6)  |                | 0.078                 |
|                                      | ug/I           | ND (1.8)  | ND (0.80) -                | ND (0.78)                     | -          | ND (1.8) ND (0.90)  | -         | ND (0.78)   | -          | ND (1.8) ND (0.79                      | ,           | ND (0.56) -          | ND (1.8) ND (0.78)    | (/                                    | ( - )                 | ()                             | ND (1.9)        | ND (1.8)  | -              | 0.0048<br>NS          |
| Dibenzofuran<br>Di n butul obthalata | ug/l           | 1 -7      | ND (0.57) -<br>ND (0.51) - | (/                            |            |                     | -         | ( /         |            | ND (1.8) ND (0.56<br>ND (1.3) ND (0.50 | <i>'</i>    | (* * * 7             | ()                    | (/                                    | ( - ) ( )             | ( )                            |                 |           | -              | -                     |
| Di-n-butyl phthalate                 | ug/l           |           |                            | ND (0.50)                     | -          | ND (1.3) ND (0.57)  | -         | ND (0.50) a | -          |                                        | ,           | ND (0.50) -          | ND (1.3) ND (0.50)    |                                       | ND (1.3) ND (0.52)    |                                |                 | ND (1.3)  | -              | 700<br>NS             |
| Di-n-octyl phthalate                 | ug/l           | ND (1.8)  | ND (0.51) -                | ND (0.50) <sup>a</sup>        | -          | ND (1.8) ND (0.57)  | -         |             | -          | ND (1.8) ND (0.50                      | ,           | ND (0.50) -          | ND (1.8) ND (0.50)    |                                       | ND (1.8) ND (0.52)    |                                | ND (2.1)        | ND (1.8)  | -              | 5,600                 |
| Diethyl phthalate                    | ug/l           | ND (2.0)  |                            | ND (0.48)                     | -          | ND (2.0) ND (0.55)  |           | ND (0.48)   | -          | ND (2.0) ND (0.48                      | ,           | ND (0.49) -          | ND (2.0) ND (0.48)    |                                       | ND (2.0) ND (0.50)    |                                | ND (2.4)        | . ,       | -              |                       |
| Dimethyl phthalate                   | ug/l           | ND (2.0)  |                            | ND (0.48)                     | -          | ND (2.0) ND (0.55)  | -         | ND (0.48)   | -          | ND (2.0) ND (0.48                      | ,           | ND (0.49) -          | ND (2.0) ND (0.48)    |                                       | ND (2.0) ND (0.50)    |                                | ND (2.4)        | ND (2.0)  | -              | 70,000                |
| bis(2-Ethylhexyl)phthalate           | ug/l           | ND (1.5)  |                            | ND (1.6)                      |            | ND (1.5) ND (0.77)  | -         | ND (1.6)    | -          | ND (1.5) ND (0.67                      |             | ND (1.7) -           | ND (1.5) ND (0.67)    |                                       | ND (1.5) ND (0.70)    |                                | ND (1.8)        | ND (1.5)  | -              | 6                     |
| Fluoranthene                         | ug/l           | ND (1.2)  |                            | ND (0.71)                     | -          | ND (1.2) ND (0.82)  | -         | ND (0.71)   | -          | ND (1.2) ND (0.72                      |             | ND (0.73) -          | ND (1.2) ND (0.72)    |                                       | ND (1.2) ND (0.75)    |                                | ND (1.4)        | ND (1.2)  | -              | 280                   |
| Fluorene                             | ug/l           | ND (1.4)  | ND (0.57) -                | ND (0.55)                     | -          | ND (1.4) ND (0.64)  | -         | ND (0.55)   | -          | ND (1.4) ND (0.56                      |             | ND (0.56) -          | ND (1.4) ND (0.56)    |                                       | ND (1.4) ND (0.58)    |                                | ND (1.6)        | ND (1.4)  | -              | 280                   |
| Hexachlorobenzene                    | ug/l           | ND (2.0)  | ND (0.49) -                | ND (0.48)                     | -          | ND (2.0) ND (0.55)  | -         | ND (0.48)   | -          | ND (2.0) ND (0.48                      |             | ND (0.49) -          | ND (2.0) ND (0.48)    |                                       | ND (2.0) ND (0.50)    |                                | ND (2.4)        | ND (2.0)  | -              | 1                     |
| Hexachlorobutadiene                  | ug/l           | ND (1.0)  | ND (0.78) -                | ND (0.76)                     | -          | ND (1.0) ND (0.88)  | -         | ND (0.76)   | -          | ND (1.0) ND (0.77                      | ,           | ND (0.78) -          | ND (1.0) ND (0.77)    |                                       | ND (1.0) ND (0.80)    |                                | ND (1.2)        | ND (1.0)  | -              | 0.45                  |
| Hexachlorocyclopentadiene            | ug/l           | ND (1.8)  | ND (4.9) -                 | ND (4.8)                      | -          | ND (1.8) ND (5.5)   | -         | ND (4.8)    | -          | ND (1.8) ND (4.8)                      |             | ND (4.9) -           | ND (1.8) ND (4.8)     |                                       | ND (1.8) ND (5.0)     |                                | ND (2.1)        | ND (1.8)  | -              | 50                    |
| Hexachloroethane                     | ug/l           | ND (1.0)  | ND (0.98) -                | ND (0.95)                     | -          | ND (1.0) ND (1.1)   | -         | ND (0.95)   | -          | ND (1.0) ND (0.96                      | ,           | ND (0.97) -          | ND (1.0) ND (0.96)    |                                       | ND (1.0) ND (1.0)     |                                | ND (1.2)        | ND (1.0)  | -              | 0.7                   |
| Indeno(1,2,3-cd)pyrene               | ug/l           | ND (1.6)  | ND (1.6) -                 | ND (1.6)                      | -          | ND (1.6) ND (1.8)   | -         | ND (1.6)    | -          | ND (1.6) ND (1.6)                      | -           | ND (1.6) -           | ND (1.6) ND (1.6)     |                                       | ND (1.6) ND (1.6)     |                                | ND (1.9)        | ND (1.6)  | -              | 0.0048                |
| Isophorone                           | ug/l           | ND (1.0)  | ND (0.60) -                | ND (0.58)                     | -          | ND (1.0) ND (0.67)  | -         | ND (0.58)   | -          | ND (1.0) ND (0.59                      | ) -         | ND (0.59) -          | ND (1.0) ND (0.58)    |                                       | ND (1.0) ND (0.61)    |                                | ND (1.2)        | ND (1.0)  | -              | 140                   |
| 2-Methylnaphthalene                  | ug/l           | ND (1.8)  | ND (0.71) -                | ND (0.69)                     | -          | ND (1.8) ND (0.79)  | -         | ND (0.69)   | -          | ND (1.8) ND (0.69                      | ) -         | ND (0.70) -          | ND (1.8) ND (0.69)    | - ND (0.70) -                         | ND (1.8) ND (0.72)    | ) - ND (0.69) -                | ND (2.1)        | ND (1.8)  | -              | NS                    |
| 2-Nitroaniline                       | ug/l           | ND (2.2)  | ND (0.49) -                | ND (0.48)                     | -          | ND (2.2) ND (0.55)  | -         | ND (0.48)   | -          | ND (2.2) ND (0.48                      | ) -         | ND (0.49) -          | ND (2.2) ND (0.48)    | - ND (0.49) -                         | ND (2.2) ND (0.50)    | ) - ND (0.48) -                | ND (2.6)        | ND (2.2)  | -              | NS                    |
| 3-Nitroaniline                       | ug/l           | ND (1.8)  | ND (0.58) -                | ND (0.56)                     | -          | ND (1.8) ND (0.65)  | -         | ND (0.56)   | -          | ND (1.8) ND (0.57                      | ) -         | ND (0.57) -          | ND (1.8) ND (0.56)    | - ND (0.57) -                         | ND (1.8) ND (0.59)    | ) - ND (0.57) -                | ND (2.1)        | ND (1.8)  | -              | NS                    |
| 4-Nitroaniline                       | ug/l           | ND (1.5)  | ND (0.55) -                | ND (0.53)                     | -          | ND (1.5) ND (0.62)  | -         | ND (0.53)   | -          | ND (1.5) ND (0.54                      | ) -         | ND (0.54) -          | ND (1.5) ND (0.54)    | - ND (0.54) -                         | ND (1.5) ND (0.56)    | - ND (0.54) -                  | ND (1.8)        | ND (1.5)  | -              | NS                    |
| Naphthalene                          | ug/l           | ND (1.0)  | ND (0.75) -                | ND (0.73)                     | -          | ND (1.0) ND (0.85)  | -         | ND (0.73)   | -          | ND (1.0) ND (0.74                      | ) -         | ND (0.75) -          | ND (1.0) ND (0.74)    | - ND (0.75) -                         | ND (1.0) ND (0.77)    | ) - ND (0.74) -                | ND (1.2)        | ND (1.0)  | -              | 140                   |
| Nitrobenzene                         | ug/l           | ND (1.0)  | ND (0.68) -                | ND (0.66)                     | -          | ND (1.0) ND (0.76)  | -         | ND (0.66)   | -          | ND (1.0) ND (0.66                      | ) -         | ND (0.67) -          | ND (1.0) ND (0.66)    | - ND (0.67) -                         | ND (1.0) ND (0.69)    | ) - ND (0.66) -                | ND (1.2)        | ND (1.0)  | -              | 3.5                   |
| N-Nitroso-di-n-propylamine           | ug/l           |           | ND (0.68) -                | ND (0.66)                     | -          | ND (1.6) ND (0.76)  | -         | ND (0.66)   | -          | ND (1.6) ND (0.66                      | ,           | ND (0.67) -          | ND (1.6) ND (0.66)    |                                       | ND (1.6) ND (0.69)    | , ,                            | ND (1.9)        | ND (1.6)  | -              | 0.005                 |
|                                      | ~ <del>9</del> |           |                            |                               | L          |                     |           |             | 1          |                                        | /           |                      |                       |                                       |                       |                                |                 |           | I              | 0.000                 |

| N-Nitrosodiphenylamine | ug/l | ND (1.0) | ND (0.49) - | ND (0.48) - | ND (1.0) | ND (0.55) - | ND (0.48) | - | ND (1.0) | ND (0.48) - | ND (0.49) | - ND (1.0) | ND (0.48) | - ND (0.49) | - | ND (1.0) ND (0.50) |  |
|------------------------|------|----------|-------------|-------------|----------|-------------|-----------|---|----------|-------------|-----------|------------|-----------|-------------|---|--------------------|--|
|------------------------|------|----------|-------------|-------------|----------|-------------|-----------|---|----------|-------------|-----------|------------|-----------|-------------|---|--------------------|--|

| N-Nitrosodiphenylamine      | ug/l  | ND (1.0)          | ND (0.49)          | -         | ND (0.48)          | -          | ND (1.0)           | ND (0.55)        | -         | ND (0.48)         | -          | ND (1.0)            | ND (0.48)          | -         | ND (0.49)          | -          | ND (1.0)            | ND (0.48)          | -          | ND (0.49)          | -          | ND (1.0)           | ND (0.50)          | -          | ND (0.48)          | -          | ND (1.2)          | ND (1.0)  | -                  | 7.1                   |
|-----------------------------|-------|-------------------|--------------------|-----------|--------------------|------------|--------------------|------------------|-----------|-------------------|------------|---------------------|--------------------|-----------|--------------------|------------|---------------------|--------------------|------------|--------------------|------------|--------------------|--------------------|------------|--------------------|------------|-------------------|-----------|--------------------|-----------------------|
| Client Sample ID:           |       |                   |                    | G-01      |                    |            |                    |                  | G-02      |                   |            |                     |                    | G-06      |                    |            |                     |                    | G-07       |                    |            |                    |                    | G-08       | _                  |            | Sample            | Cooler    | Sample             | Colorado Wate         |
| Site Name                   |       |                   |                    | Milk Ck   |                    |            |                    |                  | Dever Ck  |                   |            |                     |                    | Hubbard C | k                  |            |                     | ۱                  | West Muddy | Ck                 |            |                    |                    | East Muddy | Ck                 |            | Blank             | Blank     | Blank              | Supply                |
| Date Sampled:               | Units | 1/19/2011         | 7/26/2011          | 7/26/2011 | 11/21/2011         | 11/21/2011 | 1/19/2011          | 7/26/2011        | 7/26/2011 | 11/21/2011        | 11/21/2011 | 1/19/2011           | 7/26/2011          | 7/26/2011 | 11/21/2011         | 11/21/2011 | 1/19/2011           | 7/26/2011          | 7/26/2011  | 11/21/2011         | 11/21/2011 | 1/19/2011          | 7/26/2011          | 7/26/2011  | 11/21/2011         | 11/21/2011 | 1/19/2011         | 1/19/2011 | 7/26/2011          | Standard <sup>1</sup> |
| Phenanthrene                | ug/l  | ND (2.0)          | ND (0.49)          | -         | ND (0.48)          | -          | ND (2.0)           | ND (0.55)        | -         | ND (0.48)         | -          | ND (2.0)            | ND (0.48)          | -         | ND (0.49)          | -          | ND (2.0)            | ND (0.48)          | -          | ND (0.49)          | -          | ND (2.0)           | ND (0.50)          | -          | ND (0.48)          | -          | ND (2.4)          | ND (2.0)  |                    | NS                    |
| Pyrene                      | ug/l  | ND (1.0)          | ND (0.49)          | -         | ND (0.48)          | -          | ND (1.0)           | ND (0.55)        | -         | ND (0.48)         | -          | ND (1.0)            | ND (0.48)          | -         | ND (0.49)          | -          | ND (1.0)            | ND (0.48)          | -          | ND (0.49)          | -          | ND (1.0)           | ND (0.50)          | -          | ND (0.48)          | -          | ND (1.2)          | ND (1.0)  |                    | 210                   |
| 1,2,4-Trichlorobenzene      | ug/l  | ND (1.8)          | ND (0.85)          | -         | ND (0.83)          | -          | ND (1.8)           | ND (0.96)        | -         | ND (0.83)         | -          | ND (1.8)            | ND (0.84)          | -         | ND (0.84)          | -          | ND (1.8)            | ND (0.83)          | -          | ND (0.84)          | -          | ND (1.8)           | ND (0.87)          | -          | ND (0.84)          | -          | ND (2.1)          | ND (1.8)  | -                  | 70                    |
|                             |       |                   |                    |           |                    |            |                    |                  |           |                   |            |                     |                    |           |                    |            |                     |                    |            |                    |            |                    |                    |            |                    |            |                   |           |                    |                       |
| Metals Analysis             |       |                   |                    |           |                    |            | _                  |                  |           |                   |            |                     |                    |           |                    |            |                     |                    |            |                    |            |                    |                    |            |                    |            |                   |           |                    |                       |
|                             |       |                   | Total              | Dissolved | Total              | Dissolved  |                    | Total            | Dissolved | Total             | Dissolved  |                     | Total              | Dissolved | Total              | Dissolved  | -                   | Total              | Dissolved  | Total              | Dissolved  |                    | Total              | Dissolved  | Total              | Dissolved  |                   |           |                    |                       |
| Arsenic, Total              | ug/l  | <25               | <25                | -         | <25                | -          | <25                | <25              | -         | <25               | -          | <25                 | <25                | -         | <25                | -          | <25                 | <25                | -          | <25                | -          | <25                | <25                | -          | <25                | -          | <25               | -         | -                  | 10 (30-day)           |
| Barium, Total               | ug/l  | 31.7              | 28.5               | -         | 25                 | -          | 51                 | 79.4             | -         | 62.7              | -          | 53.1                | 89.2               | -         | 57.4               | -          | 175                 | 186                | -          | 184                | -          | 164                | 131                | -          | 142                | -          | 30.6              | -         | -                  | 490 (30-day)          |
| Cadmium, Diss               | ug/l  | <10               | -                  | <10       | -                  | <10        | <10                | -                | <10       | -                 | <10        | <10                 | -                  | <10       | -                  | <10        | <10                 | -                  | <10        | -                  | <10        | <10                | -                  | <10        | -                  | <10        | <10               | -         | -                  | 5 (1-day)             |
| Calcium, Diss               | ug/l  | 19000             | -                  | 13600     | -                  | 14600      | 63600              | -                | 70500     | -                 | 84600      | 27700               | -                  | 38300     | -                  | 27000      | 58800               | -                  | 50900      | -                  | 58600      | 41100              | -                  | 31000      | -                  | 36200      | 18800             | -         | -                  | NS                    |
| Iron, Total                 | ug/l  | 131               | 183                | -         | 125                | -          | 186                | 1340             | -         | 101               | -          | 149                 | 426                | -         | 276                | -          | <70                 | <70                | -          | 78.6               | -          | 337                | 531                | -          | 143                | -          | 130               | -         | -                  | NS                    |
| Magnesium, Diss             | ug/l  | 7480              | -                  | 4810      | -                  | 5590       | 35700              | -                | 36400     | -                 | 54200      | 7170                | -                  | 10200     | -                  | 7240       | 9810                | -                  | 9710       | -                  | 10300      | 6390               | -                  | 4490       | -                  | 5770       | 7410              | -         | -                  | NS                    |
| Manganese, Total            | ug/l  | <5.0              | 13.8               | -         | 5.8                | -          | 29.5               | 73               | -         | 33                | -          | 7                   | 20.7               | -         | 19.6               | -          | 20.8                | 10.9               | -          | 13.5               | -          | 81.8               | 47.8               | -          | 31.1               | -          | <5.0              | -         | -                  | NS                    |
| Potassium, Diss             | ug/l  | 1480              | -                  | 1290      | -                  | 1460       | 3750               | -                | 4130      | -                 | 5810       | 1360                | -                  | 1910      | -                  | 1370       | 1120                | -                  | 1350       | -                  | 1240       | <1000              | -                  | <1000      | -                  | <1000      | 1470              | -         | -                  | NS                    |
| Sodium, Diss                | ug/l  | 4030              | -                  | 2790      | -                  | 3240       | 31900              | -                | 32500     | -                 | 50000      | 18000               | -                  | 32400     | -                  | 17500      | 11200               | -                  | 10500      | -                  | 10100      | 11500              | -                  | 7420       | -                  | 9140       | 4040              | -         | -                  | NS                    |
| Strontium, Tot              | ug/l  | 121               | 92                 | -         | 98.9               | -          | 523                | 600              | -         | 768               | -          | 237                 | 382                | -         | 244                | -          | 453                 | 484                | -          | 474                | -          | 382                | 295                | -          | 342                | -          | 121               | -         | -                  | NS                    |
| Zinc, Diss                  | ug/l  | <30               | -                  | <30       | -                  | <30        | <30                | -                | <30       | -                 | <30        | <30                 | -                  | <30       | -                  | <30        | <30                 | -                  | <30        | -                  | <30        | <30                | -                  | <30        | -                  | <30        | <30               | -         | -                  | NS                    |
|                             |       |                   |                    |           |                    |            |                    |                  |           |                   |            |                     |                    |           |                    |            |                     |                    |            |                    |            |                    |                    |            |                    |            |                   |           |                    |                       |
| General Chemistry           |       | 1                 | <b>.</b>           |           |                    | 1          |                    |                  | 1         |                   |            |                     |                    |           | 1                  |            | 1                   | 1                  |            | F                  |            | P.                 | 1                  |            |                    |            | 1                 | 1         |                    |                       |
| Bicarbonate as HCO3         | mg/l  | 98.6              | 73.6               | -         | 78.5               | -          | 299                | 341              | -         | 441               | -          | 141                 | 185                | -         | 135                | -          | 239                 | 204                | -          | 240                | -          | 168                | 130                | -          | 152                | -          | 97.8              | -         | -                  | NS                    |
| Carbonate as CO3            | mg/l  | <5.0              | <5.0               | -         | <5.0               | -          | <5.0               | <5.0             | -         | <5.0              | -          | <5.0                | 5.3                | -         | <5.0               | -          | <5.0                | 7.2                | -          | <5.0               | -          | <5.0               | <5.0               | -          | <5.0               | -          | <5.0              | -         | -                  | NS                    |
| Chloride                    | mg/l  | 1.1               | <0.50              | -         | 0.82               | -          | 7.4                | 7.2              | -         | 10.8              | -          | 2.1                 | 2.9                | -         | 1.9                | -          | 2.8                 | 2.1                | -          | 2.5                | -          | 4                  | 1.6                | -          | 2.5                | -          | 1.1               | -         | <0.50              | 250 (30-day)          |
| Nitrogen, Nitrate           | mg/l  | 0.15              | <0.045             | -         | <0.045             | -          | 0.32               | 1.2              | -         | 0.68              | -          | <0.090 <sup>a</sup> | <0.045             | -         | <0.045             | -          | <0.090 <sup>a</sup> | <0.045             | -          | <0.045             | -          | 0.094              | <0.045             | -          | <0.045             | -          | 0.15              | -         | <0.045             | 10 (1-day)            |
| Nitrogen, Nitrate + Nitrite | mg/l  | 0.15 <sup>b</sup> | <0.11 <sup>a</sup> | -         | <0.11 <sup>b</sup> | -          | <0.54 <sup>b</sup> | 1.2 <sup>a</sup> | -         | 0.68 <sup>b</sup> | -          | <0.21 <sup>b</sup>  | <0.11 <sup>a</sup> | -         | <0.11 <sup>b</sup> | -          | <0.21 <sup>b</sup>  | <0.11 <sup>a</sup> | -          | <0.11 <sup>b</sup> | -          | <0.11 <sup>b</sup> | <0.11 <sup>a</sup> | -          | <0.11 <sup>b</sup> | -          | 0.15 <sup>b</sup> | -         | <0.11 <sup>a</sup> | -                     |
| Nitrogen, Nitrite           | mg/l  | <0.061            | <0.061             | -         | <0.061             | -          | <0.31 <sup>a</sup> | <0.061           | -         | <0.061            | -          | <0.12 <sup>a</sup>  | <0.061             | -         | <0.061             | -          | <0.12 <sup>a</sup>  | <0.061             | -          | <0.061             | -          | <0.061             | <0.061             | -          | <0.061             | -          | <0.061            | -         | <0.061             | 1 (1-day)             |
| Phosphorus, Total           | mg/l  | <0.10             | <0.10              | -         | 0.016              | -          | <0.10              | 0.17             | -         | 0.035             | -          | <0.10               | <0.10              | -         | <0.010             | -          | <0.10               | <0.10              | -          | <0.010             | -          | <0.10              | <0.10              | -          | <0.010             | -          | <0.10             | -         | <0.10              | NS                    |
| Solids, Total Dissolved     | mg/l  | 106               | 100                | -         | 92                 | -          | 410                | 480              | -         | 612               | -          | 190                 | 250                | -         | 162                | -          | 248                 | 212                | -          | 232                | -          | 178                | 136                | -          | 152                | -          | 134               | -         | <10                | NS                    |
| Solids, Total Suspended     | mg/l  | <5.0              | 5                  | -         | <5.0               | -          | 5                  | 36               | -         | <5.0              | -          | <5.0                | 13                 | -         | <5.0               | -          | 11                  | <5.0               | -          | 8                  | -          | 116                | 47                 | -          | <5.0               | -          | <5.0              | -         | <5.0               | NS                    |
| Sulfate                     | mg/l  | 4.1               | 1.8                | -         | 3.3                | -          | 99.5               | 108              | -         | 155               | -          | 18.7                | 33.2               | -         | 17.5               | -          | 8.1                 | 5                  | -          | 6.2                | -          | 6                  | 3.2                | -          | 4.6                | -          | 4.1               | -         | <0.50              | 250 (30-day)          |
|                             |       |                   |                    |           |                    |            |                    |                  |           |                   |            |                     |                    |           |                    |            |                     |                    |            |                    |            |                    |                    |            |                    |            |                   |           |                    |                       |
| Field Parameters            |       |                   |                    | 1         |                    |            |                    | 1                |           |                   |            |                     |                    |           |                    |            |                     |                    |            |                    |            |                    |                    |            |                    |            |                   |           |                    |                       |
| Flow                        | cfs   | frozen            | 5.3                |           | 2.1                |            | na                 | 2.39             |           | 2.23              |            | 19.6                | 2.71               |           | 3.4                |            | 33.4                | 12.84              |            | 9.67               |            | 57.3               | 50.1               |            | 57.8               |            |                   |           | /                  | -                     |
| Temperature                 | Deg C | 1                 | 14                 |           | 2                  |            | 0                  | 17               |           | 4                 |            | 3                   | 19                 |           | 2                  |            | 2                   | 18                 |            | 0                  |            | 1                  | 9                  |            | 1                  |            |                   |           | /                  | NS                    |
| pH                          | s.u.  | 8.34              | 8.42               |           | 8.21               |            | 8.56               | 8.59             |           | 8.7               |            | 8.43                | 8.35               |           | 8.33               |            | 8.54                | 8.66               |            | 8.52               |            | 8.47               | 8.47               |            | 8.46               |            |                   |           | /                  | 6.5 - 9               |
| Specific conductance        | uS/cm | 167               | 129                |           | 134                |            | 665                | 726              |           | 919               |            | 264                 | 396                |           | 250                |            | 379                 | 351                | 1          | 375                |            | 280                | 227                |            | 249                |            |                   |           |                    | NS                    |

Footnotes:

<sup>a</sup> Elevated detection limit due to matrix interference

<sup>b</sup> Calculated as: (Nitrogen, Nitrate) + (Nitrogen, Nitrite)

ND = not detected above the reporting limit

 $\boldsymbol{J}$  = estimated value, below the lower quantitation limit

< indicates value less than the detection limit (e.g., if <5, then 5 is the detection limit, and the sample concentration was less than 5)

NS = no surface water supply standard

<sup>1</sup> Some parameters also have water+fish and/or fish ingestion human health based standards, agricultural standards, and/or aquatic life based standards that are not listed in this table (see CDPHE WQCC Regulation No. 31 (5 CCR 1003-31): The Basic Standards and Methodologies for Surface Water

| Table 2. Spring Samp                               | lina Resu    | lts                    |             |                        |                |                             |                             |                        | I                                 |
|----------------------------------------------------|--------------|------------------------|-------------|------------------------|----------------|-----------------------------|-----------------------------|------------------------|-----------------------------------|
| Client Sample ID:                                  |              | H-01                   | H-01        | H-02                   | H-02           | H-03                        | H-03                        | H-04                   |                                   |
| Lab Sample ID:                                     |              | Cave Spring            | Cave Spring | Belknap Spring         | Belknap Spring | Domestic<br>Pipeline Spring | Domestic<br>Pipeline Spring | Sample Blank           | Colorado Ground<br>Water Standard |
| Date Sampled:                                      |              | 7/26/2011              | 7/26/2011   | 7/26/2011              | 7/26/2011      | 7/26/2011                   | 7/26/2011                   | 7/26/2011              | Water Standard                    |
|                                                    |              | unfiltered             | filtered    | unfiltered             | filtered       | unfiltered                  | filtered                    | ground water           |                                   |
| GC/MS Volatiles (SW846<br>8260B)                   |              |                        |             |                        |                |                             |                             |                        |                                   |
| Acetone                                            | ug/l         | ND (5.0)               | -           | ND (5.0)               | -              | ND (5.0)                    | -                           | ND (5.0)               | NS                                |
| Benzene                                            | ug/l         | ND (0.25)              | -           | ND (0.25)              | -              | ND (0.25)                   | -                           | ND (0.25)              | 5                                 |
| Bromodichloromethane                               | ug/l         | ND (0.50)              | -           | ND (0.50)              | -              | ND (0.50)                   | -                           | ND (0.50)              | 0.56                              |
| Bromoform                                          | ug/l         | ND (0.50)              | -           | ND (0.50)              | -              | ND (0.50)                   | -                           | ND (0.50)              | 4                                 |
| Chlorobenzene<br>Chloroethane                      | ug/l<br>ug/l | ND (0.50)<br>ND (0.50) | -           | ND (0.50)<br>ND (0.50) | -              | ND (0.50)<br>ND (0.50)      | -                           | ND (0.50)<br>ND (0.50) | 100<br>NS                         |
| Chloroform                                         | ug/l         | ND (0.50)              | -           | ND (0.50)              | -              | ND (0.50)                   | -                           | ND (0.50)              | 3.5                               |
| 2-Chloroethyl vinyl ether                          | ug/l         | ND (5.0)               | -           | ND (5.0)               | -              | ND (5.0)                    | -                           | ND (5.0)               | NS                                |
| Carbon disulfide                                   | ug/l         | ND (1.4)               | -           | ND (1.4)               | -              | ND (1.4)                    | -                           | ND (1.4)               | NS                                |
| Carbon tetrachloride                               | ug/l         | ND (0.50)              | -           | ND (0.50)              | -              | ND (0.50)                   | -                           | ND (0.50)              | 5                                 |
| 1,1-Dichloroethane                                 | ug/l         | ND (0.50)              | -           | ND (0.50)              | -              | ND (0.50)                   | -                           | ND (0.50)              | NS                                |
| 1,1-Dichloroethylene<br>1,2-Dichloroethane         | ug/l<br>ug/l | ND (0.77)<br>ND (0.50) | -           | ND (0.77)<br>ND (0.50) | -              | ND (0.77)<br>ND (0.50)      | -                           | ND (0.77)<br>ND (0.50) | 7 5                               |
| 1,2-Dichloropropane                                | ug/l         | ND (0.50)              | -           | ND (0.50)              | -              | ND (0.50)                   | _                           | ND (0.50)              | 5                                 |
| Dibromochloromethane                               | ug/l         | ND (0.50)              | -           | ND (0.50)              | -              | ND (0.50)                   | -                           | ND (0.50)              | 14                                |
| cis-1,2-Dichloroethylene                           | ug/l         | ND (0.32)              | -           | ND (0.32)              | -              | ND (0.32)                   | -                           | ND (0.32)              | 70                                |
| cis-1,3-Dichloropropene                            | ug/l         | ND (0.50)              | -           | ND (0.50)              | -              | ND (0.50)                   | -                           | ND (0.50)              | NS                                |
| m-Dichlorobenzene                                  | ug/l         | ND (0.50)              | -           | ND (0.50)<br>ND (0.54) | -              | ND (0.50)                   | -                           | ND (0.50)              | NS                                |
| o-Dichlorobenzene<br>p-Dichlorobenzene             | ug/l<br>ug/l | ND (0.54)<br>ND (0.50) | -           | ND (0.54)<br>ND (0.50) | -              | ND (0.54)<br>ND (0.50)      | -                           | ND (0.54)<br>ND (0.50) | NS<br>NS                          |
| trans-1,2-Dichloroethylene                         | ug/l         | ND (0.90)              | -           | ND (0.90)              | -              | ND (0.90)                   | -                           | ND (0.90)              | 100                               |
| trans-1,3-Dichloropropene                          | ug/l         | ND (0.50)              | -           | ND (0.50)              | -              | ND (0.50)                   | -                           | ND (0.50)              | NS                                |
| Ethylbenzene                                       | ug/l         | ND (0.50)              | -           | ND (0.50)              | -              | ND (0.50)                   | -                           | ND (0.50)              | 700                               |
| 2-Hexanone                                         | ug/l         | ND (0.50)              | -           | ND (0.50)              | -              | ND (0.50)                   | -                           | ND (0.50)              | NS                                |
| 4-Methyl-2-pentanone                               | ug/l         | ND (2.5)<br>ND (2.9)   | -           | ND (2.5)<br>ND (2.9)   | -              | ND (2.5)<br>ND (2.9)        | -                           | ND (2.5)<br>ND (2.9)   | NS<br>NS                          |
| Methyl bromide<br>Methyl chloride                  | ug/l<br>ug/l | ND (2.9)<br>ND (0.58)  | -           | ND (2.9)<br>ND (0.58)  | -              | ND (2.9)<br>ND (0.58)       | -                           | ND (2.9)<br>ND (0.58)  | NS                                |
| Methylene chloride                                 | ug/l         | ND (2.5)               | -           | ND (2.5)               | -              | ND (2.5)                    | -                           | ND (2.5)               | 5                                 |
| Methyl ethyl ketone                                | ug/l         | ND (2.5)               | -           | ND (2.5)               | -              | ND (2.5)                    | -                           | ND (2.5)               | NS                                |
| Styrene                                            | ug/l         | ND (0.50)              | -           | ND (0.50)              | -              | ND (0.50)                   | -                           | ND (0.50)              | 100                               |
| 1,1,1-Trichloroethane                              | ug/l         | ND (0.50)              | -           | ND (0.50)              | -              | ND (0.50)                   | -                           | ND (0.50)              | 200                               |
| 1,1,2,2-Tetrachloroethane<br>1,1,2-Trichloroethane | ug/l<br>ug/l | ND (0.50)<br>ND (0.50) | -           | ND (0.50)<br>ND (0.50) | -              | ND (0.50)<br>ND (0.50)      | -                           | ND (0.50)<br>ND (0.50) | 0.18                              |
| Tetrachloroethylene                                | ug/l         | ND (0.50)              | -           | ND (0.50)              | -              | ND (0.50)                   | -                           | ND (0.50)              | 5                                 |
| Toluene                                            | ug/l         | ND (1.0)               | -           | ND (1.0)               | -              | ND (1.0)                    | -                           | ND (1.0)               | 1,000                             |
| Trichloroethylene                                  | ug/l         | ND (0.50)              | -           | ND (0.50)              | -              | ND (0.50)                   | -                           | ND (0.50)              | 5                                 |
| Vinyl chloride                                     | ug/l         | ND (0.75)              | -           | ND (0.75)              | -              | ND (0.75)                   | -                           | ND (0.75)              | 2                                 |
| Vinyl Acetate                                      | ug/l         | ND (2.5)               | -           | ND (2.5)               | -              | ND (2.5)                    | -                           | ND (2.5)               | NS                                |
| Xylene (total)                                     | ug/l         | ND (2.0)               | -           | ND (2.0)               | -              | ND (2.0)                    | -                           | ND (2.0)               | 10,000                            |
| GC/MS Semi-volatiles (SW84                         | 6            |                        |             |                        |                |                             |                             |                        |                                   |
| 8270C)                                             |              | ND (7.1)               | 1           | ND (7.1)               |                | ND (7.1)                    |                             |                        | NO                                |
| Benzoic Acid<br>2-Chlorophenol                     | ug/l<br>ug/l | ND (7.1)<br>ND (0.55)  | -           | ND (7.1)<br>ND (0.55)  | -              | ND (7.1)<br>ND (0.55)       | -                           | -                      | NS<br>35                          |
| 4-Chloro-3-methyl phenol                           | ug/l         | ND (0.48)              | -           | ND (0.47)              | -              | ND (0.48)                   | _                           | _                      | 210                               |
| 2,4-Dichlorophenol                                 | ug/l         | ND (0.50)              | -           | ND (0.49)              | -              | ND (0.50)                   | -                           | -                      | 21                                |
| 2,4-Dimethylphenol                                 | ug/l         | ND (0.81)              | -           | ND (0.81)              | -              | ND (0.81)                   | -                           | -                      | 140                               |
| 2,4-Dinitrophenol                                  | ug/l         | ND (3.8)               | -           | ND (3.8)               | -              | ND (3.8)                    | -                           | -                      | 14                                |
| 4,6-Dinitro-o-cresol<br>2-Methylphenol             | ug/l<br>ug/l | ND (4.8)<br>ND (0.52)  | -           | ND (4.7)<br>ND (0.52)  | -              | ND (4.8)<br>ND (0.52)       | -                           | -                      | 0.27<br>NS                        |
| 4-Methylphenol                                     | ug/l         | ND (0.32)<br>ND (0.49) | -           | ND (0.32)              | -              | ND (0.52)<br>ND (0.49)      | -                           | -                      | NS                                |
| 2-Nitrophenol                                      | ug/l         | ND (0.53)              | -           | ND (0.53)              | -              | ND (0.53)                   | -                           | -                      | NS                                |
| 4-Nitrophenol                                      | ug/l         | ND (2.9)               | -           | ND (2.8)               | -              | ND (2.9)                    | -                           | -                      | 56                                |
| Pentachlorophenol                                  | ug/l         | ND (0.67)              | -           | ND (0.66)              | -              | ND (0.67)                   | -                           | -                      | 1                                 |
| Phenol                                             | ug/l         | ND (0.48)              | -           | ND (0.47)              | -              | ND (0.48)                   | -                           | -                      | 2,100                             |
| 2,4,5-Trichlorophenol<br>2,4,6-Trichlorophenol     | ug/l<br>ug/l | ND (0.74)<br>ND (0.56) | -           | ND (0.74)<br>ND (0.56) | -              | ND (0.74)<br>ND (0.56)      | -                           | -                      | 700<br>3.2                        |
| Acenaphthene                                       | ug/l         | ND (0.56)<br>ND (0.60) | -           | ND (0.56)<br>ND (0.60) | -              | ND (0.56)<br>ND (0.60)      | -                           | -                      | 420                               |
| Acenaphthylene                                     | ug/l         | ND (0.60)              | -           | ND (0.60)              | -              | ND (0.60)                   | -                           | -                      | NS                                |
| Anthracene                                         | ug/l         | ND (0.48)              | -           | ND (0.47)              | -              | ND (0.48)                   | -                           | -                      | 2,100                             |
| Benzo(a)anthracene                                 | ug/l         | ND (0.48)              | -           | ND (0.47)              | -              | ND (0.48)                   | -                           | -                      | 0.0048                            |
| Benzo(a)pyrene                                     | ug/l         | ND (0.48)              | -           | ND (0.47)              | -              | ND (0.48)                   | -                           |                        | 0.2                               |
| Benzo(b)fluoranthene<br>Benzo(g,h,i)perylene       | ug/l<br>ug/l | ND (0.48)<br>ND (0.54) | -           | ND (0.47)<br>ND (0.54) | -              | ND (0.48)<br>ND (0.54)      | -                           | -                      | 0.0048<br>NS                      |
| Benzo(g,n,i)perylene<br>Benzo(k)fluoranthene       | ug/l         | ND (0.54)<br>ND (0.48) | -           | ND (0.54)<br>ND (0.47) | -              | ND (0.54)<br>ND (0.48)      | -                           | -                      | 0.0048                            |
| 4-Bromophenyl phenyl ether                         | ug/l         | ND (0.48)              | -           | ND (0.47)              |                | ND (0.48)                   | -                           | -                      | NS                                |
| Butyl benzyl phthalate                             | ug/l         | ND (0.48)              | -           | ND (0.47)              | -              | ND (0.48)                   | -                           | -                      | 1,400                             |
| Benzyl Alcohol                                     | ug/l         | ND (0.61)              | -           | ND (0.61)              | -              | ND (0.61)                   | -                           | -                      | NS                                |
| 2-Chloronaphthalene                                | ug/l         | ND (0.63)              | -           | ND (0.63)              | -              | ND (0.63)                   | -                           | -                      | NS                                |
| 4-Chloroaniline<br>Chrysene                        | ug/l<br>ug/l | ND (0.49)<br>ND (0.48) | -           | ND (0.48)<br>ND (0.47) | -              | ND (0.49)<br>ND (0.48)      | -                           | -                      | NS<br>0.0048                      |
| Chrysene<br>bis(2-Chloroethoxy)methane             | ug/I<br>ug/I | ND (0.48)<br>ND (0.66) | -           | ND (0.47)<br>ND (0.65) | -              | ND (0.48)<br>ND (0.66)      | -                           | -                      | 0.0048<br>NS                      |
|                                                    | -9.          |                        | 1           |                        | 1              |                             | 1                           | 1                      | 140                               |

| Client Sample ID:                                          |               | H-01                   | H-01          | H-02                   | H-02           | H-03                   | H-03            | H-04               |                   |
|------------------------------------------------------------|---------------|------------------------|---------------|------------------------|----------------|------------------------|-----------------|--------------------|-------------------|
| Lab Sample ID:                                             |               | Cave Spring            | Cave Spring   | Belknap Spring         | Belknap Spring | Domestic               | Domestic        | Sample Blank       | Colorado Ground   |
| -                                                          |               |                        |               |                        |                | Pipeline Spring        | Pipeline Spring | -                  | Water Standard    |
| Date Sampled:                                              |               | 7/26/2011              | 7/26/2011     | 7/26/2011              | 7/26/2011      | 7/26/2011              | 7/26/2011       | 7/26/2011          |                   |
| bis(2-Chloroethyl)ether                                    | ug/l          | ND (0.69)              | -             | ND (0.68)              | -              | ND (0.69)              | -               | -                  | NS                |
| bis(2-Chloroisopropyl)ether<br>4-Chlorophenyl phenyl ether | ug/l<br>ug/l  | ND (0.64)<br>ND (0.53) | -             | ND (0.64)<br>ND (0.53) | -              | ND (0.64)<br>ND (0.53) | -               | -                  | 280<br>NS         |
| 1,2-Dichlorobenzene                                        | ug/l          | ND (0.33)<br>ND (0.70) | -             | ND (0.53)              | -              | ND (0.53)<br>ND (0.70) | -               | -                  | 600               |
| 1,3-Dichlorobenzene                                        | ug/l          | ND (0.86)              | -             | ND (0.85)              | -              | ND (0.86)              | -               | _                  | 94                |
| 1,4-Dichlorobenzene                                        | ug/l          | ND (0.72)              | -             | ND (0.72)              | -              | ND (0.72)              | -               | -                  | 75                |
| 2,4-Dinitrotoluene                                         | ug/l          | ND (0.48)              | -             | ND (0.47)              | -              | ND (0.48)              | -               | -                  | 0.11              |
| 2,6-Dinitrotoluene                                         | ug/l          | ND (0.48)              | -             | ND (0.47)              | -              | ND (0.48)              | -               | -                  | NS                |
| 3,3'-Dichlorobenzidine                                     | ug/l          | ND (0.58)              | -             | ND (0.58)              | -              | ND (0.58)              | -               | -                  | NS                |
| Dibenzo(a,h)anthracene                                     | ug/l          | ND (0.78)              | -             | ND (0.78)              | -              | ND (0.78)              | -               | -                  | 0.0048            |
| Dibenzofuran                                               | ug/l          | ND (0.55)              | -             | ND (0.55)              | -              | ND (0.55)              | -               | -                  | NS                |
| Di-n-butyl phthalate                                       | ug/l          | ND (0.50)              | -             | ND (0.49)              | -              | ND (0.50)              | -               | -                  | 700               |
| Di-n-octyl phthalate                                       | ug/l          | ND (0.50)              | -             | ND (0.49)              | -              | ND (0.50)              | -               | -                  | NS                |
| Diethyl phthalate                                          | ug/l          | ND (0.48)              | -             | ND (0.47)              | -              | ND (0.48)              | -               | -                  | 5,600             |
| Dimethyl phthalate                                         | ug/l          | ND (0.48)              | -             | ND (0.47)              | -              | ND (0.48)              | -               | -                  | NS                |
| bis(2-Ethylhexyl)phthalate                                 | ug/l          | 1.0 J                  | -             | 0.92 J                 | -              | ND (0.67)              | -               | -                  | 6                 |
| Fluoranthene                                               | ug/l          | ND (0.71)              | -             | ND (0.71)              | -              | ND (0.71)              | -               | -                  | 280               |
| Fluorene                                                   | ug/l          | ND (0.55)              | -             | ND (0.55)              | -              | ND (0.55)              | -               | -                  | 280               |
| Hexachlorobenzene                                          | ug/l          | ND (0.48)              | -             | ND (0.47)              | -              | ND (0.48)              | -               | -                  | 1                 |
| Hexachlorobutadiene                                        | ug/l          | ND (0.76)              | -             | ND (0.76)              | -              | ND (0.76)              | -               | -                  | 0.45              |
| Hexachlorocyclopentadiene                                  | ug/l          | ND (4.8)               |               | ND (4.7)               |                | ND (4.8)               |                 | -                  | 50                |
| Hexachloroethane<br>Indeno(1,2,3-cd)pyrene                 | ug/l          | ND (0.95)              | -             | ND (0.95)<br>ND (1.5)  | -              | ND (0.95)              | -               | -                  | 0.7               |
| Isophorone                                                 | ug/l<br>ug/l  | ND (1.6)<br>ND (0.58)  | -             | ND (1.5)<br>ND (0.58)  | -              | ND (1.6)<br>ND (0.58)  | -               | -                  | 0.0048            |
| 2-Methylnaphthalene                                        | ug/l          | ND (0.58)<br>ND (0.69) | -             | ND (0.68)              | -              | ND (0.58)<br>ND (0.69) | -               | -                  | NS                |
| 2-Nitroaniline                                             | ug/l          | ND (0.48)              | -             | ND (0.68)              | -              | ND (0.69)              | -               |                    | NS                |
| 3-Nitroaniline                                             | ug/l          | ND (0.46)              | -             | ND (0.56)              |                | ND (0.46)              | -               |                    | NS                |
| 4-Nitroaniline                                             | ug/l          | ND (0.53)              | -             | ND (0.53)              | -              | ND (0.53)              | -               | -                  | NS                |
| Naphthalene                                                | ug/l          | ND (0.73)              | -             | ND (0.73)              | -              | ND (0.73)              | -               | -                  | 140               |
| Nitrobenzene                                               | ug/l          | ND (0.66)              | -             | ND (0.65)              | -              | ND (0.66)              | -               | -                  | 3.5               |
| N-Nitroso-di-n-propylamine                                 | ug/l          | ND (0.66)              | -             | ND (0.65)              | -              | ND (0.66)              | -               | -                  | 0.005             |
| N-Nitrosodiphenylamine                                     | ug/l          | ND (0.48)              | -             | ND (0.47)              | -              | ND (0.48)              | -               | -                  | 0.0016            |
| Phenanthrene                                               | ug/l          | ND (0.48)              | -             | ND (0.47)              | -              | ND (0.48)              | -               | -                  | NS                |
| Pyrene                                                     | ug/l          | ND (0.48)              | -             | ND (0.47)              | -              | ND (0.48)              | -               | -                  | 210               |
| 1,2,4-Trichlorobenzene                                     | ug/l          | ND (0.83)              | -             | ND (0.82)              | -              | ND (0.83)              | -               | -                  | 70                |
|                                                            |               |                        |               |                        |                |                        |                 |                    |                   |
| GC Volatiles (RSK175 MOD)                                  | -             |                        |               |                        |                |                        |                 |                    |                   |
| Methane                                                    | mg/l          | ND (0.00080)           | -             | ND (0.00080)           | -              | ND (0.00080)           | -               | -                  | NS                |
| Ethane                                                     | mg/l          | ND (0.0016)            | -             | ND (0.0016)            | -              | ND (0.0016)            | -               | -                  | NS                |
| Ethene                                                     | mg/l          | ND (0.0024)            | -             | ND (0.0024)            | -              | ND (0.0024)            | -               | -                  | NS                |
|                                                            |               |                        |               |                        |                |                        |                 |                    |                   |
| Dissolved Metals Analysis                                  |               |                        | 10            |                        | 10             |                        | 10              | 1                  | _                 |
| Cadmium                                                    | ug/l          | -                      | <10<br>61900  | -                      | <10<br>62700   | -                      | <10<br>37700    | -                  | 5<br>NS           |
| Calcium                                                    | ug/l          | -                      |               | -                      |                | -                      |                 | -                  |                   |
| Magnesium<br>Potassium                                     | ug/l<br>ug/l  | -                      | 19300<br>1980 | -                      | 39000<br>1700  | -                      | 24500<br>2500   | -                  | NS<br>NS          |
| Sodium                                                     | ug/l          | -                      | 48400         | -                      | 41000          | -                      | 39000           | -                  | NS                |
| Zinc                                                       | ug/l          | -                      | <30           | -                      | <30            | -                      | <30             | _                  | 5                 |
| Lino                                                       | ug/i          | I                      | 100           |                        | 100            |                        | 100             | 1                  | Ŭ                 |
| General Chemistry                                          |               |                        |               |                        |                |                        |                 |                    |                   |
|                                                            |               |                        |               |                        |                |                        |                 |                    |                   |
| Bicarbonate as HCO3                                        | mg/l          | 330                    | -             | 351                    | -              | 296                    | -               | -                  | NS                |
| Carbonate as CO3                                           | mg/l          | <5.0                   | -             | <5.0                   | -              | <5.0                   | -               | -                  | NS                |
| Chloride                                                   | mg/l          | 4.6                    | -             | 3.1                    | -              | 2.3                    | -               | <0.50              | 250               |
| Nitrogen, Nitrate                                          | mg/l          | <0.23 <sup>b</sup>     | -             | <0.23 <sup>b</sup>     | -              | 0.36                   | -               | <0.045             | 10                |
| Nitrogen, Nitrate + Nitrite                                | mg/l          | <0.29 <sup>a</sup>     | -             | <0.29 <sup>a</sup>     | -              | 0.36 <sup>a</sup>      | -               | <0.11 <sup>a</sup> | 10                |
| Nitrogen, Nitrite                                          | mg/l          | <0.061                 | -             | <0.061                 | -              | <0.061                 | -               | <0.061             | 1                 |
| Phosphorus, Total                                          | mg/l          | <0.10                  | -             | <0.10                  | -              | <0.10                  | -               | <0.10              | NS                |
| Solids, Total Dissolved                                    | mg/l          | 384                    | -             | 480                    | -              | 332                    | -               | <10                | 1.25 x background |
| Solids, Total Suspended                                    | mg/l          | <5.0                   | -             | <5.0                   | -              | <5.0                   | -               | <5.0               | NS                |
| Sulfate                                                    | mg/l          | 52                     | -             | 104                    | -              | 28.3                   | -               | <0.50              | 250               |
| <b>C</b> 11 <b>D</b>                                       |               |                        |               |                        |                |                        |                 |                    |                   |
| Field Parameters                                           | -4-           | 0.010                  |               |                        |                |                        |                 |                    |                   |
| Flow                                                       | cfs           | 0.018                  |               | na                     |                | na                     |                 |                    | -                 |
| Temperature<br>pH                                          | Deg C<br>s.u. | 9<br>7.31              |               | 14<br>7.5              |                | 14<br>7.78             |                 |                    | NS                |
| pn<br>Specific conductance                                 | s.u.<br>uS/cm | 636                    |               | 7.5                    |                | 532                    |                 |                    | 6.5 - 8.5<br>NS   |
| opeonio conductance                                        | 40/011        | 000                    |               | 743                    | 1              | 552                    |                 | I                  | 6M                |

#### Footnotes:

<sup>a</sup> Calculated as: (Nitrogen, Nitrate) + (Nitrogen, Nitrite)

<sup>b</sup> Elevated detection limit due to matrix interference.

ND = not detected above the reporting limit J = estimated value, below the lower quantitation limit < indicates value less than the detection limit (e.g., if <5, then 5 is the detection limit, and the sample concentration was less than 5) NS = no ground water standard